Skip to main content

Welcome!

Come explore the fascinating world of cellular RNA Molecules with Mount Holyoke College Biochemistry 330 students.

Comments

Popular posts from this blog

RNA modification is “sno” problem for snoRNAs

Posted by Oliver Stockert            Today I am going to tell you about one of my favorite classes of RNAs. They are called small nucleolar RNAs (or snoRNAs). SnoRNAs are short, noncoding, and abundant in the nucleoli of eukaryotic organisms.  They have important roles within cells by associating with proteins, finding a specific mRNA, and modifying the mRNA with the help of the associated protein. There are two main types of snoRNAs that each have their own structure, function, and purpose. The two types are H/ACA box and C/D box snoRNAs. You may have heard of  sequence “boxes” in regards to proteins or RNA before; it just means a section of the sequence is genetically conserved to make snoRNAs function and bind with a high level of specificity. Figure 1 outlines the H/ACA boxes and the C/D boxes on each type of snoRNA. The boxes represent an important parts of the sequences that all C/D box or H/ACA box snoRNAs contain that helps them...

U1 snRNP is a Superstar RNA-protein Complex

All life forms are able to survive because they can replicate themselves faithfully and pass on their genes to their progeny. We live in a world where our genetic blueprint is double-stranded DNA built from nucleotides A, T, C, and G. Our DNA sequences are used as a template to form an intermediate molecule called RNA. This messenger RNA is used as a template to form functional molecules called proteins. But this RNA (called pre-mRNA) needs to be processed (into mRNA) before it can be read into a protein. A long time ago it was believed that only other proteins possessed the ability to process pre-mRNA. But one fine day, researchers discovered that RNA could carry out (aka catalyze) its own processing! RNA molecules possessing catalytic ability were termed ‘ribozymes’ (akin to how protein catalysts are called ‘enzymes’) (1).   In particular, scientists discovered RNA sequences called "introns" that can self-catalyze their removal from an mRNA. This is called self-spli...

The GlmS Riboswitch: A very unique addition to the catalytic RNA family!

The GlmS   Riboswitch: A very unique addition to the catalytic RNA family! Figure 1. Riboswitch folding! (People in White Coats) We have all heard at some point that our genetic information is encoded in our DNA. Perhaps you have also heard that RNA is transcribed from DNA, and that proteins are synthesized from the information carried by RNA. This is known as the Central Dogma of Molecular Biology. From the Central Dogma, one would think that RNA only serves as a messenger, relaying instructions from DNA to protein, but that is not the case! RNA molecules are capable of participating in a wide array of reactions! They can even perform catalysis—previously thought to be exclusively performed by proteins. These catalytic RNA molecules have been dubbed “ribozymes.” Another interesting set of RNA molecules are the riboswitches. Riboswitches regulate gene expression. They are found in the sequence immediately prior to the gene that they regulated, and, ...